新设备释放的F射线即时检测数据--
释放口强度超出检测范围。
持续时间:0.913秒。
直径:1.17厘米。
王浩听了报告以后,马上抓住了关键点,“0.913秒,比上一次的数据好像低了……”
他重新查看数据,发现上一个设备释放的F射线,持续时间为1.192秒,两个数据做出对比,马上就能得出结论,“看来F射线的持续时间,除了和内置能量强度有关,还和F射线的强度有关。”
F射线强度越高,维持需要的内置能量强度越高。
现在所释放的F射线强队,对比原来最低增加了50%,内置的核反应堆强度也有一点小提升,但幅度并不大,结果持续时间还变短了一些。
旁边的研究员王强则是问道,“如果用同样的设备,释放出低强度的F射线,也许持续时间更长?”
“可能是这样。”
王浩思考着点头,继续说道,“设备不同,内置能量强度的承载力不同。能释放高强度的F射线,说明内部强湮灭力场薄层的强度也很高,就能承载更强的内置能量。”
“我们的实验还是保守了。”
他说着摇了摇头。
在没有准确的实验数据基础下,内置核反应堆肯定以稳为主,来保证不会因为能量强度过高,或是出现其他的问题造成设备损坏。
现在还是以释放F射线为主,正式开始核聚变项目后,才会进行场力承载能量上限的大型实验研究。
一个小时以后,各项检测数据都出来了。
材料磁化反应的最高强度是14T,数据相对还是有些低的,但放在F射线实验里就已经很不错了,主要是因为F射线覆盖的是一条线,而不是材料的全部,磁化数据自然要低一些。
之后才是重点。
材料检测。
这次实验是以释放F射线为主,也同时会进行材料的检测,一系列的单质材料和化合物,甚至是压缩的气体都被放置在F射线经过的方位。
F射线是一种场力,而不是纯粹的能量,并不会因为中途有物质,造成能力损耗近而影响传播覆盖距离。
即便放置再多的材料,也不会影响实验结果。
实验结束。
王浩就回到了西海大学,第二天早上就拿到了一系列的检测报告,负责检测的有两个机构,分别是F射线实验组附带的材料实验室,还